BFD原理和应用
1.BFD(Bidirectional Forwarding Detection,双向转发检测)提供了一个通用的、标准化的、介质无关和协议无关的快速故障检测机制,用于快速检测、监控网络中链路或者IP路由的转发连通状态
网络故障检测遇到的问题:
在无法通过硬件信号检测故障的系统中,应用通常采用上层协议本身的Hello报文机制检测网络故障。
常用路由协议的Hello报文机制检测时间较长,检测时间超过1秒钟。当应用在网络中传输的数据超过GB/s时,秒级的检测时间将会导致应用传输的数据大量丢失。
在三层网络中,静态路由本身没有故障检查机制
2.BFD概述:
BFD提供了一个通用的、标准化的、介质无关的、协议无关的快速故障检测机制,有以下两大优点:
对相邻转发引擎之间的通道提供轻负荷、快速故障检测。
用单一的机制对任何介质、任何协议层进行实时检测。
BFD是一个简单的“Hello”协议。两个系统之间建立BFD会话通道,并周期性发送BFD检测报文,如果某个系统在规定的时间内没有收到对端的检测报文,则认为该通道的某个部分发生了故障
3.BFD报文结构
BFD检测是通过维护在两个系统之间建立的BFD会话来实现的,系统通过发送BFD报文建立会话。
BFD控制报文根据场景不同封装不同,报文结构由强制部分和可选的认证字段组成。
Sta:BFD本地状态。
Detect Mult:检测超时倍数,用于检测方计算检测超时时间。
My Discriminator:BFD会话连接本地标识符(Local Discriminator) 。发送系统产生的一个唯一的、非0鉴别值,用来区分一个系统的多个BFD会话。
Your Discriminator:BFD会话连接远端标识符(Remote Discriminator) 。从远端系统接收到的鉴别值,这个域直接返回接收到的“My Discriminator”,如果不知道这个值就返回0。
Desired Min TX Interval:本地支持的最小BFD报文发送间隔。
Required Min RX Interval:本地支持的最小BFD报文接收间隔。
Required Min Echo RX Interval:本地支持的最小Echo报文接收间隔,单位为微秒(如果本地不支持Echo功能,则设置0)

4.BFD会话建立
BFD会话的建立有两种方式,即静态建立BFD会话和动态建立BFD会话。BFD通过控制报文中的本地标识符和远端标识符区分不同的会话。静态和动态创建BFD会话的主要区别在于Local Discriminator和Remote Discriminator的配置方式不同。
1. 静态建立BFD会话是指通过命令行手工配置BFD会话参数,包括配置本地标识符和远端标识符等,然后手工下发BFD会话建立请求
2.动态建立BFD会话的本地标识符由触发创建BFD会话的系统动态分配,远端标识符从收到对端BFD消息的Local Discriminator的值学习而来
5.BFD会话状态
BFD会话有四种状态:Down、Init、Up和AdminDown。会话状态变化通过BFD报文的State字段传递,系统根据自己本地的会话状态和接收到的对端BFD报文驱动状态改变,如左下图所示。BFD状态机的建立和拆除都采用三次握手机制,如右下图所示,以确保两端系统都能知道状态的变化。
6.BFD检测模式
BFD的检测机制:两个系统建立BFD会话,并沿它们之间的路径周期性发送BFD控制报文,如果一方在既定的时间内没有收到BFD控制报文,则认为路径上发生了故障。BFD的检测模式有异步模式和查询模式两种
1.异步模式:系统之间相互周期性地发送BFD控制包,如果某个系统在检测时间内没有收到对端发来的BFD控制报文,就宣布会话为Down
2.查询模式:在需要验证连接性的情况下,系统连续发送多个BFD控制包,如果在检测时间内没有收到返回的报文就宣布会话为Down
7.BFD检测时间
BFD会话检测时长由TX(Desired Min TX Interval),RX(Required Min RX Interval),DM(Detect Multi)三个参数决定。BFD报文的实际发送时间间隔,实际接受时间间隔由BFD会话协商决定

8.BFD Echo功能
BFD Echo功能也称为BFD回声功能,是由本地发送BFD Echo报文,远端系统将报文环回的一种检测机制。
在两台直接相连的设备中,其中一台设备支持BFD功能(R1);另一台设备不支持BFD功能(R2),只支持基本的网络层转发。为了能够快速的检测这两台设备之间的故障,可以在支持BFD功能的设备上创建单臂回声功能的BFD会话。支持BFD功能的设备主动发起回声请求功能,不支持BFD功能的设备接收到该报文后直接将其环回,从而实现转发链路的连通性检测功能

9.BFD应用场景
联动功能由检测模块、Track和应用模块三部分组成
9.1 静态路由与BFD联动
静态路由自身没有检测机制,如果静态路由存在冗余路径,通过静态路由与BFD联动,当主用路径故障时,实现静态路由的快速切换
静态路由与BFD联动应用广泛,如下图中R1是园区网的出口路由器,R1通过两条链路分别连接ISP1和ISP2,正常情况下默认路由经过的链路为指向ISP1的链路,当通往ISP1的链路出现故障的时候,BFD会话能够快速感知,并通知路由器将流量切换到指向ISP2的链路

9.2 OSPF与BFD联动
OSPF在未绑定BFD的情况下,链路故障检测时间由协议Hello机制决定,通常是秒级。通过绑定BFD,可以实现毫秒级故障检测。
A.BFD与OSPF联动就是将BFD和OSPF协议关联起来, BFD将链路故障的快速检测结果告知OSPF协议
1.OSPF通过自己的Hello机制发现邻居并建立连接。
2.OSPF在建立了新的邻居关系后,将邻居信息(包括目的地址和源地址等)通告给BFD。
3.BFD根据收到的邻居信息建立会话,会话建立以后,BFD开始检测链路故障。
4.正常情况下,R1根据OSPF路径开销大小选择经过R2到达R4。
B.BFD会话建立后会周期性地快速发送BFD报文,如果在检测时间内没有收到BFD报文则认为该双向转发路径发生了故障,通知被服务的上层应用进行相应的处理
5.当R1和R2之间链路出现故障,BFD首先快速检测到链路故障,BFD会话状态变为Down并通知R1。
6.R1处理邻居Down事件,通知本地OSPF进程邻居不可达,重新进行路由计算,选择通过R3到达R4

10.BFD配置命令
创建BFD会话绑定信息,并进入BFD会话视图
[Huawei] bfd session-name bind peer-ip ip-address [ vpn-instance vpn-name ] interface interface-type interface-number [ source-ip ip-address ]
创建使用组播地址作为对端地址的BFD会话,并进入BFD会话视图
[Huawei] bfd session-name bind peer-ip default-ip interface interface-type interface-number [ source-ip ip-address ]
创建BFD for IPv6的绑定信息,并进入BFD会话视图
[Huawei] bfd session-name bind peer-ipv6 ip-address [ vpn-instance vpn-name ] interface interface-type interface-number [ source-ipv6 ip-address ]
创建静态标识符自协商BFD会话
[Huawei] bfd session-name bind peer-ip ip-address [ vpn-instance vpn-name ] interface interface-type interface-number [ source-ip ip-address ] auto
创建单臂Echo功能的BFD会话
[Huawei] bfd session-name bind peer-ip ip-address [ vpn-instance vpn-name ] interface interface-type interface-number [ source-ip ip-address ] one-arm-echo
配置BFD会话的本地标识符
[Huawei-bfd-session-test] discriminator local discr-value
配置BFD会话的远端标识符
[Huawei-bfd-session-test] discriminator remote discr-value
配置标识符时,本端的本地标识符与对端的远端标识符必需相同,否则BFD会话无法正确建立。并且,本地标识符和远端标识符配置成功后不可修改。
11.案例:
1.静态路由与BFD联动配置
实验要求:
如上图组网所示,在R1上配置到达R4的Loopback0: 4.4.4.4/32网段的浮动静态路由,正常情况下通过R2访问R4,当R2故障时,自动选路通过R3访问R4的Loopback0;
在R1与R2之间建立BFD会话,并与静态路由绑定,实现故障快速检测和路径快速收敛。

A.在R1与R2之间建立静态BFD会话:
[R1]bfd
[R1]bfd 12 bind peer 10.0.12.2 interface GigabitEthernet 0/0/1
[R1-bfd-session-12]discriminator local 10
[R1-bfd-session-12]discriminator remote 20
[R1-bfd-session-12]commit
[R2]bfd
[R2]bfd 21 bind peer 10.0.12.1 interface GigabitEthernet 0/0/1
[R2-bfd-session-21]discriminator local 20
[R2-bfd-session-21]discriminator remote 10
[R2-bfd-session-21]commit
B.在R1上配置静态路由并绑定BFD会话:
[R1] ip route-static 4.4.4.4 32 10.0.12.2 track bfd-session 12
[R1] ip route-static 4.4.4.4 32 10.0.13.2 preference 100
C.BFD会话配置验证:
[R1]display bfd session all verbose
2.OSPF与BFD联动配置
实验要求:
R1、R2、R3运行OSPF协议,且都属于Area 0;
配置OSPF与BFD联动,通过设置所有OSPF接口的BFD会话参数进一步提高链路状态变化时OSPF的收敛速度;
将BFD会话的最大发送间隔和最大接受间隔都设置为100ms,检测次数默认不变。

R1配置如下:
[R1]bfd
[R1]interface GigabitEthernet 0/0/1
[R1-GigabitEthernet0/0/1]ip address 10.0.12.1 30
[R1]ospf 1
[R1-ospf-1]area 0
[R1-ospf-1-area-0.0.0.0]network 10.0.12.0 0.0.0.3
[R1-ospf-1-area-0.0.0.0]quit
[R1-ospf-1]bfd all-interfaces enable
[R1-ospf-1]bfd all-interfaces min-tx-interval 100 min-rx-interval 100 detect-multiplier 3
R2和R3的配置与R1类似,此处省略。
BFD会话配置验证:
[R1]display bfd session all verbose